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magine walking around in your backyard and

suddenly discovering a vein of gold in a comer you
thought you knew well. Or imagine how Jed Clampett of
the Beverly Hillbillies felt when oil started bubbling up
through the ground. A similar sensation of incredulous
excitement swept over the solid-state physics community
in the early weeks of 2001, when researchers announced
that magnesium diboride (MgB,) superconducts -
conducts electricity without resistance - at temperatures
approaching 40 kelvins.

This simple compound had been studied in the 1950s
and had been on the shelves in some laboratories for
various mundane purposes for decades, with no one
suspecting its enormously valuable hidden talent.
Although 40 K (or —233 degrees Celsius) may sound
rather low, it was nearly double the record for
compounds made of metals (about 23 K for niobium-
based alloys, which are widely used in research and
industry). A transition temperature that high can be
achieved by technologies that cost much less than those
needed to bring about superconductivity in the niobium
alloys. Possible applications include superconducting
magnets and power lines.

Unlike high-temperature superconductors (copper
oxide materials that superconduct at temperatures
as high as 130 K), MgB, seems to be a traditional
superconductor, albeit a novel variant. In their decades-
long quest for superconductors with ever higher
transition temperatures, physicists had developed rules of

thumb regarding what kind of combinations of elements
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to try. In addition, many suspected that 23 K was close to
the maximum transition temperature possible for a
traditional superconductor. To their great surprise, MgB,
defied these rules and blew away the barrier to higher
temperatures.

The speed with which understanding of MgB, grew
was absolutely amazing. Jun Akimitsu of Aoyama Gakuin
University in Tokyo announced the discovery at a
meeting in mid-January 2001. Just two months later about
100 two-minute talks on the topic were presented at the
American Physical Society’s annual March meeting, and
more than 70 research papers had been electronically
posted on the arxiv.org preprint archive. This burst of
activity happened for a few reasons. First, once you
figure out how, it is fairly simple to make relatively pure
MgB,. Second, in 2001 the condensed-matter physics
community was more wired together by the Internet than
ever before. These two ingredients, combined with the
promise of a new, simple superconductor with a high
transition temperature, formed an explosive intellectual

mixture.

Confirming the Discovery

at first, news of Akimitsu’s announcement spread only
by word of mouth and e-mail. No research paper or
electronic draft was available. When the news reached
our group a few days after the meeting, we asked a
series of questions: Can we make high-purity, solid
pieces of this stuff? (On the shelf, MgB, is a not so pure
powder.) Does it really superconduct near 40 K? (There
had been almost two decades’ worth of USOs, or
“unidentified superconducting objects” - compounds
reported to have exceptionally high transition
temperatures that other researchers could not replicate.)
If MgB, does superconduct, can we uncover the
mechanism of its superconductivity? And finally, can we
delineate some of this compound’s basic properties?

Happily for one and all, the answer to each of these
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questions was yes.

The rumor of Akimitsu’s discovery started a frantic and
wonderful time for us and for other research groups. Our
team specializes in studying the physical properties of
metallic compounds, so as soon as we heard about the
report, we emptied all of our furnaces of existing
experiments and started trying to produce MgB,.

Making the compound was a tricky business initially. It
is an example of an intermetallic compound, one made
of two or more metallic elements. The simplest way of
making intermetallic compounds - by just melting the
elements together - was not possible in this case, because
the two elements have very different melting points: 650
degrees C for magnesium and higher than 2,000 degrees
C for boron. Because magnesium boils at just over 1,100
degrees C, the magnesium would evaporate before the
compound could form, or, in the vernacular, the
magnesium would grow legs and walk away.

But the vaporization of magnesium suggested an
alternative method: we could seal a piece of magnesium
and some powdered boron inside a tantalum vessel,
which is inert, and subject them to a temperature high
enough to melt but not to boil the magnesium (say, 950
degrees C). Magnesium has a relatively high vapor
pressure - indeed, one third of an atmosphere of
magnesium vapor exists in equilibrium with the liquid
metal at 950 degrees C. We expected that this dense
vapor would diffuse into the solid boron, producing
pellets of MgB,. Sure enough, we found that in as little as
two hours this process produced very high purity MgB,
in the form of a loosely sintered pellet (like sandstone).
Within three days of hearing the rumors, we had made
these pellets and were able to confirm superconductivity
at near 40 K.

Having figured out how to make MgB, and confirmed
that it is a superconductor, we asked the next burning
question: Was it an old-fashioned superconductor whose

behavior could be explained by a long-established theory
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called BCS theory (from the initials of its three
discoverers’ last names) or an example of a more exotic
type [see box on page 93] If it was an exotic type, that
would be a profound scientific discovery. On the other
hand, if it was a conventional BCS superconductor, the
exceptionally high transition temperature would demand
an explanation, but the prospects for using the material
in applications would be more encouraging.

For several reasons, some researchers thought that
MgB, was not a standard BCS superconductor. First,
before high-temperature superconductors were
discovered in 1986, two decades had gone by with the
highest transition temperature stuck at around 20 K. This
fact led some theorists to suggest that about 30 K was the
maximum temperature possible for superconductivity in
compounds that obey BCS rules. The high-temperature
copper oxide superconductors far exceeded that limit,
but they are not thought to be BCS superconductors.

Second, MgB,'’s relatively high transition temperature,
or critical temperature (Tc), violated one of the old rules
of thumb in the search for intermetallic compounds
having a higher Tc: the more electrons that could
participate in the phase transition to the superconducting
state, the higher the transition temperature would be.
Neither magnesium nor boron brought particularly many
electrons to MgB,.

A very direct experimental test can tell whether a
superconductor is following the BCS theory. A key role in
the theory is played by lattice vibrations. Imagine that the
heavy positive ions of the crystal lattice are held in place
by strong springs (the chemical bonds). Excitations such
as heat manifest as vibrations of the ions at characteristic
frequencies. BCS theory predicts that the transition
temperature of a superconductor is proportional to the
frequency of its lattice vibrations. As is the case with
everyday objects such as wineglasses or guitar strings,
objects made from lower-mass materials have higher

characteristic frequencies than otherwise identical objects
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made from higher-mass materials. By using a different
isotope of magnesium or boron, we can make MgB, out
of atoms of different mass, which will alter the lattice
vibration frequency, which in turn should alter Tc in a
specific way.

Boron has two stable, naturally occurring isotopes:
boron 10 and boron 11. The simplest prediction of the
BCS model is that Tc should differ by 0.85 K for two
samples of MgB, made with pure boron 10 and boron
11. With our first sintered pellets of MgB,, we discovered
a shift of 1 K. The fact that the shift in Tc was a little
larger than the simple prediction can be accommodated
by BCS theory - it indicates that the boron vibrations are
more important to the superconductivity than the
magnesium vibrations [see box on page 941.

The closeness of this shift to the predicted 0.85 K
revealed that MgB, is most likely a BCS superconductor,
albeit an extreme example that has a much higher
transition temperature than any other. The predictions of
30 K upper to BCS

superconductivity were apparently not valid. This was

an approximate limit
good news, because standard intermetallic BCS
superconductors are much easier to work with and can
form useful wires much more readily than copper
oxide-based superconductors can. Indeed, it suddenly
dawned on our group that we could form MgB, wires by
simply exposing boron filaments to magnesium vapor.
Such wires are of greater use than sintered pellets for
many measurements and for applications such as

magnets.

Uses of Superconductors

although it occurs only at very low temperatures,
superconductivity has a wide variety of present-day uses,
as well as potential future applications. Some of the most
obvious derive from superconductors’ ability to carry
high currents with no energy losses or resistive heating.

An example is superconducting magnets that can
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because large electric currents or strong magnetic fields
destroy the superconductivity closer to Tc. Consequently,
a Tc of 20 K may imply an operating temperature of 10
K, which means that the superconductor has to be chilled
by liquid helium, a costly and somewhat difficult option.

The applied research community is interested in MgB,
because this material can be cooled to viable operating
temperatures more easily than the lower-Tc niobium-
based alloys and compounds that are employed today.
MgB, can be cooled by liquid hydrogen or liquid neon
or by fairly cheap, closed-cycle refrigerators that can
readily reach below 20 K.

But if this vision is to become a reality, MgB, will need
to have good superconducting properties. Researchers
are paying particular attention to the superconductor’s
mixed phase, in which a magnetic field partially destroys
the superconductivity - in most real applications, the
material will be in this phase. Weak magnetic fields do
not produce the mixed state; the superconductor
excludes such fields from its interior and remains
superconducting. At intermediate fields, however, the
material allows the magnetic field to penetrate in the
form of small tubes of magnetic flux known as vortices.
The insides of these tubes are nonsuperconducting, but
outside of them the material remains superconducting.

This mixed phase still manifests many of
superconductivity’s useful characteristics. As the strength
of the applied magnetic field increases, the percentage of
the material occupied by the flux tubes increases until
they overlap fully, at which point the whole material is
nonsuperconducting. The field strength at which
superconductivity is lost is referred to as the upper critical
field and is a key property that determines how useful a
superconductor will be in practice.

Most applications will involve intermediate fields (the
field is strong enough to be useful but not so strong as to
destroy superconductivity altogether), so the goal

becomes maximizing the range of temperatures and
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magnetic fields in which the
superconducting mixed phase
survives. Temperature also plays a role
in these considerations because the
upper critical field of a supercon-
ductor varies with temperature. Just
below Tc, the upper critical field is
close to zero - that is, even the weakest
field destroys the superconductivity. At
lower temperatures the supercon-
ductivity can resist stronger fields [see
box on page 91].

Fortunately, the upper critical field
of a material can be tuned by making
the compound in differing ways,
generally by adding certain impurities.
For example, when some carbon is
substituted for boron in MgB,, the
upper critical field is dramatically
improved. Our group and others have
shown that for about a 5 percent
substitution of carbon, the upper
critical field of MgB, can be more than
doubled - a fantastic and important
improvement in bulk samples.

In addition, the group of David C.
Larbalestier at the University of
Wisconsin—Madison has shown that
thin films of MgB, have even higher
values of the upper critical field, well
above those of triniobium tin (Nb;Sn).
The thin-film data present a vital
mystery: What is giving rise to the high
values? Is it small amounts of oxygen?
Is it some other element sneaking in
and doping in unknown ways? Is it
strain in the structure of the MgB, in

the films? Whatever the answers to
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those questions, clearly MgB, is a promising material for
superconducting magnets that can function at higher
temperatures and possibly even in higher fields than
triniobium tin, which is currently the preferred
compound for such magnets.

The second superconducting property of particular
interest for applied physics is the critical current density.
This quantity delineates the maximum amount of current
that a superconductor can carry and still maintain zero
resistance. For current densities above the critical current
density, the vortices (the small nonsuperconducting
regions of the sample) start to slip or move. Once these
regions start moving, energy losses occur - that is, the
material has a nonzero resistance. To counter this effect,
the vortices can be pinned (in essence, nailed down) by
introducing the right type of defect into the
superconductor. Often the vortex pinning can be
increased by making the individual crystallites (or grains)
of the material smaller, thus increasing the surface area
associated with grain boundaries, where vortices get
pinned. Another method of increasing vortex pinning
involves adding microscopic inclusions of some second
material such as yttrium oxide or titanium diboride.

Currently one of the major challenges associated with
making MgB, a useful superconducting material is to
increase its critical current density at higher magnetic
fields. The critical current density of pure MgB, is
comparable to that of triniobium tin at low magnetic
fields but falls off much more rapidly at higher fields.
This is not good news if the goal is to use MgB, in
magnets, which are meant to produce a strong field. On
the other hand, in the four years since the discovery of
superconductivity in this compound, the research
community has made considerable improvements in
critical current density, both in the low-field value and,
perhaps more important, in the higher-field values.
Research in this area is very active, and it appears that

physicists will soon make further improvements and
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achieve a better understanding of what will provide a

good pinning site in MgB,.

Past, Present and Future
the discovery of superconductivity in MgB, is

simultaneously the fruition of decades of focused
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research and a stark reminder that nature does not
always heed the rules of thumb we make up in our often
vain attempts to describe her. Although MgB, was known
to exist for about 50 years, it was never tested for
superconductivity, partly because it did not fit our image
of a likely intermetallic superconductor. Luckily, in the
search for new materials and properties, nature’s voice
can still be heard over the din of our prejudices.

Over the past four years, humankind’s understanding
of superconductivity in MgB, has evolved at breakneck
speed. We have a clear idea of the properties of high-
purity MgB,, and we are learning how to modify the
material so as to improve the ranges of magnetic field
and current density over which it can be useful. The
properties at 20 to 30 K have improved to the point that
it appears high-current-density applications, such as
magnets, can be made to operate either with cryogens
such as liquid hydrogen or liquid neon or with closed-
cycle refrigerators. Prototype coated wires and even some
initial magnets have been made, but more work is
needed to optimize the superconductor’s properties and
to understand its metallurgy as well as that of possible
wire-coating materials.

On the whole, the future for MgB, looks quite
promising. Indeed, if a shift toward a hydrogen-based

economy occurs, then MgB, could truly come into its
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own. If large quantities of hydrogen are to be produced,
for example, at small pebble-bed reactors [see “Next-
Generation Nuclear Power,” by James A. Lake, Ralph G.
Bennett and John F. Kotek; Scientific American, January
2002], the hydrogen will have to be transported in some
manner. One way would be through insulated, liquid-
carrying pipes that would maintain temperatures below
hydrogen’s 20 K boiling point. These pipes could
constitute the cryogenic system for lossless power cables
made of MgB, sharing the space inside the thermal
insulation. Although such a system currently sounds more
like science fiction than an engineering reality, it has
been proposed for serious study.

After the discovery of the first copper oxide-based
superconductor, researchers found scores of other
superconducting copper oxides. Yet four years after the
discovery of MgB,, no other related compounds have
been found to have anomalously high Tc values. The
discovery of superconductivity in the oxides was akin to
discovering a whole new continent (with wide expanses
to be explored). The discovery of superconductivity in
MgB,, on the other hand, was more like the discovery of
an outlying island in a well-explored archipelago. We do
not know if this is the final member of the chain or if yet

another surprise awaits us out there.
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